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•Isotopes have the same number of protons – identical 
atomic number 

•Isotopes have different number of neutrons – different 
atomic mass 

•Stable isotopes do not undergo radioactive decay – 
tritium is not a stable isotope 
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Isotopic abundances: 
 
◦ 12C   99%,   13C   1 % 

 
◦ 1H    99.985%,    2H   0.014 % 

 
◦ 35Cl   75.5%,   37Cl   24.5 % 



Trichloroethylene: 
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•“Similar” physical and chemical properties. 
•Molecules with variable isotope substitutions show 
identical reaction pathways. 

but 
•Slightly different rate constants and phase 
partitioning coefficients.  

Reactions often result with 
isotope fractionation 



R = 13C/12C 

δ13C of –30‰ means that 13C/12C of sample is 
 30‰ lower than 13C/12C of the standard.   

(R standard  is  0.0112372)  
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Assessment of 
in-situ degradation 

Source identification 
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“Currently, CSIA is in transition from a research 
tool to an applied method that is well integrated 
into comprehensive plans for management of 
contaminated sites”  





 Permits determination of isotope ratios in individual 
compounds present in sample matrix 

 Combination of chromatography with isotope ratio mass 
spectrometry. 

 To work with environmental samples, CSIA has to be 
optimized for sensitivity and matrix resolution. 
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 Methods of VOCs extraction are adopted from conventional 
VOCs methods. Best performance to date: purge and trap 
(adopted from EPA 524) for aqueous VOCs, adsorbent 
preconcentration/thermal desorption (adopted from TO-17) 
for air VOCs.  
 

 For carbon and chlorine CSIA, well-optimized CSIA methods 
permit detection limits comparable to those of USEPA 8260.  
 

 For hydrogen CSIA, CSIA requires relatively large mass of 
analyte in comparison with concentration analysis. Detection 
limits worse by about 1-2 orders of magnitude. 
 

 Generally, analytes amenable to 524 or TO-17 can be 
expected to be amenable to CSIA. Several commercial options 
are available for analysis of aqueous chlorinated ethenes. 
Inquire about less common analytes or air VOCs. 

 
 



(based on recent OU methodology 
for aqueous samples) 

Carbon and Chlorine CSIA 
VC 1 ug/L 
DCE, TCE, PCE 1 ug/L* 

* 

Hydrogen CSIA 
VC, DCE 10 ug/L 
TCE  30 ug/L 

0.5 ug/L if larger volume of 
sample is available 
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after USGS.gov 
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Carbon isotope Ratios 

bioethanol 

PAHs from coal 
burning 

Most synthetic 
chemicals: CAHs, 
gasoline HCs, MtBE 

Chloroform 

C4 plants: corn 
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H Isotope Ratios of Manufactured TCE 



-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

PC
E 

(1
1)

TC
E 

(1
3)

D
C

E 
(6

)

VC
 (1

)

1,
1,

1-
TC

A 
(8

)

1,
2-

D
C

A 
(1

)

C
T 

(3
)

C
F 

(4
)

D
C

M
 (6

)

High
Mean
Low

13
C

 o / oo
C Isotope Ratios of Misc. CAHs 

δ
13C

 in 
crude oil 

after USEPA 2008 



? 



TCE δ13C 

PC
E 

δ13
C

 

-35 

-30 

-25 

-20 

-30 -25 -20 -15 

Isotope fingerprinting of TCE 
and PCE plumes 



Isotope fingerprinting of TCE 
and PCE plumes 
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CSIA supports the 
conceptual site model 



■ At vapor intrusion site, 
testing of indoor air is 
most direct way to identify 
VI impacts. 

■ Indoor sources of VOCs 
are ubiquitous: cleaners, 
glues, plastic, etc 

■ Detection of VOCs in 
indoor air does not 
necessarily indicate vapor 
intrusion. 

Critical need for reliable methods to distinguish 
between vapor intrusion and indoor sources of 
VOCs. 

Key 
Point: 
  

VOCs in 
Indoor Air 



PCE in indoor air 
is from indoor 
source.  

(Source later 
identified as 
E6000 glue) 

FINDING: 
  

GROUNDWATER 

INDOOR AIR 

INDOOR SOURCE  
(E6000 Glue) 

after McHugh et al., ES&T 2011 





Isotope fractionation is an enrichment of 
one isotope relative to another in a 
chemical or physical process. There are 
two categories of isotope effects: kinetic 
and equilibrium. 



Kinetic Isotope Fractionation 
Rate of removal of ○ faster than that of● 

k● / k○= const. 

Initial 
Final 

Biodegradation 
Chem. Degradation 
Diffusion 



12 13 
C C 

k12C > k13C 

Activation energy for the bond 
with the lighter isotope is lower. 

Degraded TCE enriched in 13C. 

k12C  k13C 



Equilibrium Isotope Fractionation 

Preferential retention of 
● in compartment A 

Equilibrium 
A B 

K● ≠ K○ 

Phase partitioning 
Reversible bio/chem.  
reactions. 



Equilibrium Isotope Fractionation 

Differences in intermolecular forces between 
isotopomers control isotope fractionation in phase 
partitioning.  

 
Light isotopes are more “sticky” and remain in the 

condensed phase.  
 
May be significant locally, in remediation scenarios 

involving extensive mass removal through vapor 
phase. 



Rayleigh Model of Kinetic 
Fractionation (Lord Rayleigh, 1896)  

Mathematical description of isotope 
fractionation 
 
Provides functional approximation for 
subsurface degradation 
 
Permits calculation of reactant mass 
destruction  



reaction progress 

“slow” reactant (13C-TCE) 

“fast” reactant (12C-TCE) 
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Reaction progress 

Exponential enrichment 
of the “slow” species  

fractionation factor constant 
α = heavyk/lightk 

(after Rayleigh, 1896)  



δ13Ct of degraded reactant 

∆ = δ13Ct – δ13C0 

δ13C0 of reactant 
at the time zero log reduction of reactant mass 
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δ13Ct = ε * ln (Conc./Conc.0) + δ13C0 

enrichment factor ε = (α -1) × 103 

ε = slope 

Rayleigh Model of Kinetic 
Fractionation: Common Notation 
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 Close match to 
Rayleigh Model 
can be observed 
if degradation is 
the predominant 
mechanism of 
attenuation 





 Historical trend of 
shrinking MtBE 
plume 

 CSIA performed in 
2000-2002  
 

after Wilson et al., 2005 
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Very good match to the Rayleigh model. 
apparent enrichment factor (ε) approx. -8 ‰. 



 Some data points follow a 
trend similar to that at 
Parsippany, NJ 

 Some data points do not 
conform do Rayleigh model 
(show no fractionation) 

MTBE δ13C values 

scale: 12 meters 
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Mass removal calculated 
by Rayleigh Eq. 

MtBE ug/L 

Degradation 
zone 

Only passive 
dilution 
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 CSIA permits determination of C, Cl and H 
isotope ratios in individual chlorinated VOCs 

 CSIA data are informative in contaminant 
source fingerprinting and in in-situ 
remediation assessment 

 Evidence of mass destruction provided by 
characteristic changes of isotope ratios 
(isotope fractionation)  

 Data interpretation utilizes the so-called 
Rayleigh model (see the following 
presentation by Dr. Wilson). 
 
 

 



Contact: 
 
Tomasz Kuder 
Univ. Oklahoma, Norman 
tkuder@ou.edu 



Cleavage of C-
H of the methyl 
group 
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Cleavage of 
Cmethyl -O 

Example: MtBE. 
Caveat: does it 
work for CAHs? 
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